9.2 Time Class Case Study (cont.)

Obyect Size

* People new to object-oriented programming
often suppose that objects must be quite large
because they contain data members and
member functions.

» Logically, this Is true—you may think of
objects as containing data and functions (and
our discussion has certainly encouraged this
view); physically, however, this Is not true.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Performance Tip 9.2

Objects contain only data, so objects are much smaller
than if they also contained member functions. The
compiler creates one copy (only) of the member
functions separate from all objects of the class. All
objects of the class share this one copy. Each object, of
course, needs its own copy of the class’s data, because
the data can vary among the objects. The function code
is nonmodifiable and, hence, can be shared among all
objects of one class.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.3 Class Scope and Accessing Class
Members

A class’s data members and member functions
belong to that class’s scope.

Nonmember functions are defined at g/obal
namespace scope, by default.

Within a class’s scope, class members are
immediately accessible by all of that class’s
member functions and can be referenced by name.

Outside a class’s scope, pub 11 ¢ class members
are referenced through one of the handles on an
object—an object name, a reference to an object
or a polnterto an object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.3 Class Scope and Accessing Class
Members (cont.)

Class Scope and Block Scope

* If a member function defines a variable with the same name
as a variable with class scope, the class-scope variable is
hidden in the function by the block-scope variable.

— Such a hidden variable can be accessed by preceding the variable
name with the class name followed by the scope resolution operator

(::).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.3 Class Scope and Accessing Class
Members (cont.)

Dot (.) and Arrow (->) Member Selection Operators

« The dot member selection operator (.) Is preceded by an
object’s name or with a reference to an object to access the
object’s members.

« The arrow member selection operator (->) iIs preceded by a
pointer to an object to access the object’s members.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.3 Class Scope and Accessing Class
Members (cont.)

Accessing public Class Members Through Objects,
References and Pointers

» Consider an Account class that has a public setBalance
member function. Given the following declarations:

Account account; // an Account object
// accountRef refers to an Account object
Account &accountRef = account;

// accountPtr points to an Account object
Account *accountPtr = &account;

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.3 Class Scope and Accessing Class
Members (cont.)

You can invoke member function setBalance using the
dot (.) and arrow (->) member selection operators as
follows:

// call setBalance via the Account object
account.setBalance(123.45);

// call setBalance via a reference to the
Account object

accountRef.setBalance(123.45);

// call setBalance via a pointer to the Account
object

accountPtr->setBalance(123.45);

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.4 Access Functions and Utility Functions

Access Functions

 Access functions can read or display data.

« A common use for access functions is to test
the truth or falsity of conditions—such
functions are often called predicate functions.

Utility Functions

A utility function (also called a helper
function) is a private member function that
supports the operation of the class’s other

©1992-2014 by Pearson Education, Inc. All

mem ber fu nCti Ons. Rights Reserved.

9.5 Ti1me Class Case Study: Constructors
with Default Arguments

* The program of Figs. 9.4-9.6 enhances class
T1me to demonstrate how arguments are
implicitly passed to a constructor.

* The constructor defined In Fig. 9.2 initialized
hour, minute and second to O (i.e.,
midnight in universal time).

* Like other functions, constructors can specify
aefault arguments.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

1 // Fig. 9.4: Time.h

2 // Time class containing a constructor with default arguments.
3 // Member functions defined in Time.cpp.

4

5 // prevent multiple inclusions of header

6 #ifndef

7 #define

8

9 // Time class definition

10 class Time

11 {

12 public:

13 explicit Time(int = 0, int = 0, int = 0); // default constructor
14

15 // set functions

16 void setTime(int, int, int); // set hour, minute, second
17 void setHour(int); // set hour (after validation)

I8 void setMinute(int); // set minute (after validation)

19 void setSecond(int); // set second (after validation)
20

Fig. 9.4 | Time class containing a constructor with default arguments. (Part |
of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

21 // get functions

22 unsigned int getHour() const; // return hour

23 unsigned int getMinute() const; // return minute

24 unsigned int getSecond() const; // return second

25

26 void printUniversal() const; // output time 1in universal-time format
27 void printStandard() const; // output time in standard-time format
28 private:

29 unsigned int hour; // 0 - 23 (24-hour clock format)

30 unsigned int minute; // 0 - 59

31 unsigned int second; // 0 - 59

32 }; // end class Time

33

34 #endif

Fig. 9.4 | Time class containing a constructor with default arguments. (Part 2
of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.5

Any change to the default argument values of a function
requires the client code to be recompiled (to ensure that
the program still functions correctly).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.5: Time.cpp

2 // Member-function definitions for class Time.

3 #include <iostream>

4 #include <iomanip>

5 #include <stdexcept>

6 #include // include definition of class Time from Time.h
7 using namespace std;

8

9 // Time constructor initializes each data member
10 Time::Time(int hour, int minute, int second)
11 {

12 setTime(hour, minute, second); // validate and set time
I3 } // end Time constructor

14

I5 // set new Time value using universal time

16 void Time::setTime(int h, int m, int s)

17 {

I8 setHour(h); // set private field hour

19 setMinute(m); // set private field minute
20 setSecond(s); // set private field second
21 } // end function setTime
22

Fig. 9.5 | Member-function definitions for class Time. (Part | of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

23 // set hour value
24 void Time::setHour(int h)

25 |

26 if (h »>= && h <)

27 hour = h;

28 else

29 throw invalid_argument();
30 1} // end function setHour

31

32 // set minute value
33 void Time::setMinute(int m)

34 {

35 if (m >= && m <)

36 minute = m;

37 else

38 throw invalid_argument()
39 } // end function setMinute

40

Fig. 9.5 | Member-function definitions for class Time. (Part 2 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

41 // set second value
42 void Time::setSecond(int s)

43 {

44 if (s >= && s <)

45 second = s;

46 else

47 throw invalid_argument();
48 1} // end function setSecond

49

50 // return hour value
51 unsigned int Time::getHour() const

52 {

53 return hour;

54 1} // end function getHour
55

56 // return minute value
57 unsigned Time::getMinute() const

58 {

59 return minute;

60 1} // end function getMinute
61

Fig. 9.5 | Member-function definitions for class Time. (Part 3 of 4.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

